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1. ON NON-IDEAL SYSTEMS

When a forcing function F is independent of the system it acts on, then the forcing function
is called ideal. Formally, the excitation may be expressed as a pure function of time. For
example consider a system driven by a sinusoidal excitation F = A4 cos(wyt) having
frequency w,, and amplitude A. In this case, the excitation is completely independent of the
system response: that is, regardless of the motion the excitation imparts on the system the
system never manifests any influence on the excitation source. In contrast, a forcing function
dependent on the response of the system is said to be non-ideal.

If in a certain model its ideal source is replaced by a non-ideal source the excitation can be
put in the form F(®), where @ is a function which depends on the response of the system.
Therefore, a non-ideal source cannot be expressed as a pure function of time, but rather as
an equation that relates the source to the system of equations that describes the system.
Hence, non-ideal systems always have one additional degree of freedom as compared with
similar ideal systems.

Consider a motor operating on a structure. A certain input (power) is required to produce
a certain output (RPM) regardless of the motion of the structure. For non-ideal systems this
may not be the case. Hence, it is interesting to analyze what happens to the motor (input,
output), as the response of the system changes. Here, the excitation is always limited in two
senses: by the characteristic curves of the particular energy source (the motor, in this case) and
by dependence of the motion of the system on the motion of the energy source. Coupling
between the governing equations of the motion and the energy source then takes place.

The greatest interaction between the vibrating system and the energy source occurs at
resonance, that is,
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where d¢/dt is the angular velocity of the rotor (energy source), p is the natural frequency of
the system, and ¢ is a small parameter of the problem.

As a consequence, in the regions of resonance, unstable conditions of motion may occur,
the form of the vibrations is changed, and the character of the transition of the system
through resonance is altered. The problem of passage through resonance of vibrating
systems has drawn special attention of engineering researchers in recent years.

In non-ideal vibrating systems, it is well known that sometimes the passage through
resonance requires more input power than is available. As a consequence the vibrating
system cannot pass through resonance or requires an intensive interaction between the
vibrating system and the energy source to be able to do it. The worst case is that in which
the vibrating system will become stuck in resonance, just before resonance conditions are
reached. Strong interaction leads to fluctuating motor speed and fairly large vibration
amplitudes (the Sommerfeld effect of getting stuck in resonance). The motor may not have
enough power to reach higher regimes with low energy consumption as most of its energy is
applied to move the structure and not to accelerate the shaft.

In a classical book by Kononenko [1] the first detailed study on the non-ideal vibrating
problem on the passage through resonance was presented. After this publication, the
problem of passing through resonance has been investigated by a number of authors and
some essential results were found, as discussed in references [2-5], for example.

If the region before resonance is considered in a typical frequency response curve, one
notes that as the power supplied to the source increases, the RPM of the motor increases
accordingly. However, this behaviour does not continue indefinitely. The closer the motor
speed moves toward the resonance frequency, the more power the source requires to
increase the motor speed. In other words, a large change in the power supplied to the motor
results in a small change in the frequency and in a large increase in the amplitude of the
resulting vibrations. Thus, near resonance it appears that additional power supplied
to the motor will only increase the amplitude of the response with little effect on the RPM
of the motor.

Finally, jump phenomena and the increase in power required by a source operating near
resonance are some of the manifestations of a non-ideal energy source. In fact, the vibrating
response provides a certain energy sink. One of the problems faced by designers is how to
drive a system through resonance and avoid this kind of energy sink.

2. A MODEL OF PARAMETRICALLY AND SELF-EXCITED SYSTEM

A remarkable feature of systems exhibiting limit cycles is that the amplitude of the
stationary motion does not depend on the initial conditions of vibrating system but on the
system parameters. Stable limit cycles generally enclose a singular point representing
a position of unstable equilibrium, so that vibrations build up and sustain themselves in the
absence of external forces. For this reason such vibrations are called self-excited vibrations
[6]. Self-excited vibrations have been examined by many authors in the current literature,
as an example, a non-ideal (stick-slip) self-excited vibrating system has been investigated in
reference [7] and the ideal model in reference [8].

Interaction between parametric and self-excited system has been presented in reference
[9], where vibrations of an ideal van der Pol-Mathieu oscillator have been examined.
A special effect, which is called a synchronization phenomenon, was observed in that
system. Parametric vibrations pull in self-excited vibrations near parametric resonance
regions. Outside these regions the system vibrates quasi-periodically with modulation
amplitude. A non-ideal system with self, parametric and external excitation was investigated
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in detail in reference [10]. A dry friction model of self-excitation and linear parametric
excitation was considered in this paper. Two stable solutions with similar amplitudes in
a resonance area were obtained for that model, for ideal as well as for non-ideal source of
energy.

Recently, an ideal self-excited system vibration with parametric and external excitations
was investigated in references [ 11, 12] for Rayleigh—Mathieu oscillator. An additional small
external excitation forcing the parametric and self-excited system can cause significant
qualitative and quantitative changes. When the external excitation is not high, there are
additional solutions in the synchronization area. The amplitude frequency characteristic
has an additional loop. There are five steady solutions in the main parametric resonance
region, but only two are stable.

In references [ 11, 12] the authors considered an ideal, self-excited, parametric mechanical
system with one degree of freedom, non-linear Duffing elasticity and non-linear parametric
excitation, given by the non-dimensional differential equation

X+ (—a+ X)X + (1 — pucos2¢)(1 + yX>)X = gcos ¢. (1)

The coefficients in the above equation are positive, small values. One can notice that
equation (1) includes linear and non-linear parametric excitation terms.

Figure 1 shows a non-ideal model for this kind of problem, which is the goal of
investigation of this paper.

The presence of the unbalanced mass m, in the non-ideal model (see Figure 1) alters the
potential and kinetic energies of the ideal problem, considered in references [11, 12],in AV
and AT, respectively. Then the expression of the Lagrangian function is expressed by

AL = AT — AV )

NN\
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Figure 1. Non-ideal model of a parametrically and self-excited system.
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where
AV =mogvo, AT =3 {mo(63 + 1d) + o2}, (3, 4)

with vy = x + rsin ¢, uy = rcos ¢.
In this way the non-ideal differential equations are written in the dimensionless form

X+ (—a+pXHX + (1 — pcos2¢d)(1 + yX?)X = g(¢pcos p — ¢p?sin )

¢ =n(kcosdp —xpsing) + I(¢), d=o )
where
. mor . T(¢)
U N A (©7

Characteristic curves of the energy source (DC motor) are assumed to be straight lines:
I'=u; — uz(f;- @®)

Note that the parameter u, is related to the voltage and u, is a constant for each model of
motor considered. The voltage is the parameter control of the problem.

The main purpose of this paper is to discuss the non-ideal parametric and self-excited
vibrations of the system defined by Figure 1, whose equations are those given in
equations (5).

An asymptotic solution of equation (5) and the stability analysis of the solution is
presented in sections 3 and 4. In section 4 numerical simulations are carried out and finally
in section 5 some concluding remarks are given.

3. ASYMPTOTIC ANALYSIS

In this paper some hypotheses for the non-ideal vibrating system defined by equations (5)
are adopted. It is assumed that the system vibrates near the main parametric resonance,
where the excitation frequency 4 is close to the natural frequency p (p = 1), while the
parametric excitation frequency is 2.9.

Introducing a small parameter ¢, one can write:

p— w=¢. 9)

One can also assume that the motion of the system takes place around the steady state. This
means that the second derivative ¢ is not large. Upon expressing parameters of equations

(5) by
o=k, f=2eP,y=2eh p=2clq=edn=ei ['(})=el(P),
the differential equations of motion take the form
X 4+ p2X =&{(@ — fX)X + fiX cos2¢ — X3 + i5X3c0os2¢p + Gpcosp — Ppsin),

¢ =e{[(d) + X cosp}. (10)
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Next, by following reference [ 1], equations (10) are transformed into new co-ordinates 4, ¢,
Y, where

X =Acos(p + ), X = — Apsin(p + ), ¢ = w (11)

and the second derivative of X has the form

o odA dy
X = —Epsm((f) + ) — <w +E>APCOS(¢ + V). (12)

Taking into account equations (11) and (12) one obtains
dA4 d .
Ecos((b+¢)—%Asin(q§+lﬂ)=(co—p) Asin(¢p + ). (13)

Substituting equations (11), (12) and (13) into the differential equations of motion (10) yields

d . d .
fp81n(</> + ) +dflf Apcos(¢ + ) — Ap(p — w)cos (¢ + ) = 8{Ap(o?+iﬁp2/12)sm(¢ + )

+3 A°p*Bsin3(¢ + ) — S Ajicos(¢p — ) — 3 Ajicos 3 + ) + 3 A*cos (¢ + )

+3A4%c0s3(¢ + ) — g A%jjicos(§ — ) — § A*Jiicos 3 + ) — 5 A*jficos (¢ + 3Y)

d
— s A%ficos(5¢ + 3) + Gw?sing — § d—i)cos d)}, (14)

do - _[da . dy
P S{F(a}) —1ip [dt sin(¢ + ) + A(w + dt)cos(qﬁ + l,b)] cos qS}.
Equations (13) and (14) lead to the derivatives dw/dt, d4/dt, dy/dt:

do

ST & {I'(w) — Apijo cos ¢ cos (¢ + ¥)},

(iTI;l = s{cjjzsian) + Aé&sin (¢ + ) — 2 A3p?Bsin(¢p + ¥) + 21‘ A3p?Bsin 3(¢p + )

353 35z

—ﬂzcos((b — ) —@005(3(# +y) +§ﬂcos(¢> +y) +1ﬂ cos 3(¢ + )
2p 2p 4 p 4 p

3 A% A%

8

3 AR oo — )
& p

cos(3¢p + V) —é cos (¢ + 3y)

—é A:;'acos(S(j) + 31//)}sin(¢ + )+ &2, ...
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% {A +q:);s1nq5+ocsm(¢+lp) 3A3 Zﬂsm(qﬁ—i—lﬂ)—i-lAz 2Bsin 3(¢p + )
+§A—ZV~COS(¢+¢)+1A—2/0083¢+¢ —LCOS(¢ W)—MCOS (3o +¥)
4 p p 2p 2p
3 A% 3 4% 3 4%,
A cosip )~ T cos (¢ — n-3 M cos (3 + )
‘% Wcos(mw)—%Amcos(qu+3¢>}°°S(¢+w)+sz,--~- (15)

To solve equations (15) the classical method of Krylov-Bogoliubov-Mitropolski is applied
[13]. According to this method, in the first approximation one can write

w = Q + SUI (¢3 Q’ a, é): A =a + 8U2(¢’ Q» a, é)’ lp = é + 8U3(¢’ Q: a, é)a (16)

where U, (¢, @2, a, &), U,(¢, 2, a, &), Us(¢, Q, a, &) are slowly changing periodic functions of
time. To find solutions for Q, a, ¢ in the first approximation, the right-hand sides of
equations (15) are averaged,

dQ ¢ [?*" da ¢ [*" dé ¢ [*
_ d - do. —= =_—_— d 17
dt 27'[ fo f!l (Pa dt 27'[ J() fa (Pa d[ 27'[ J() f§ (/77 ( )
and after integration one obtains

dQ

1
4 s{F(Q) —— apﬁQcosg’},

2

d 1 3 ~ 1 [ 1 102
&2 e f&a—fa3p2ﬁ—faﬁsin2§—fa3 y'usm2£+ g —cos &p,
4 p 8 p 2°p

dt 2 8

dé 3,7 1p T Q.

R P —2———— 0526 — LM oeae 1o |
d¢ _
dr

For the steady state, equations (18) have the form

I(Q) — 3 apijQcos & =0,

2

1 3 ~ 1l 1.0
E& g p?f — Z §1n2§—§a3/:sm25+2q?cosf 0,
3 7 1 N 1 Qz
A+2a2?l E f—— cos2§—fq—s1né 0. (19)
4 p ap

8 p 21

Rectangular velocity, amplitude and phase of the vibrating system for a steady state are
obtained from the solutions of equations (19).
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4. ON THE STABILITY ANALYSIS

The analysis of the stability of periodic solutions is performed by using the approximate
differential equations of the first order (18) which can be written in a shortened form:

dQ d d
E = Fl (a> Qa é)a dictl = FZ(aa Q’ f)a £ = F3(as Q> é) (20)

In steady state, equation (20) is equal to zero:
Fl(a’ Qa 5) = 07 F2(a7 Qa é) = O> FS(a> Qa é) :O

Upon taking into account the differences between perturbed and non-perturbed equations,
the variational differential equations are written as follows:

d59 aFl aFl aFl
— === 0 — | S+ =) 9,
dr <GQ>)Q+<6aO T\ ),
do, OF, 0F, 0F,
=|—=) ¢ — | 0, +[—==) 9
dr <m»09+<m> +< > o
déi aF3 @F3 6F3
— === 9 0 — | 0. 21
dt <6Q> ° ( da )o * - E)o " b
The characteristic determinant of equations (21) has the form
— | do— — 0 0
(‘79)0 o <6a>0 ’ (af :
aFZ an aFZ
— 9 — | 0, — — | 0¢ =0. 22
(‘79)0 ¢ (0")0 «F (65 ) >
OF OF OF
=) 5, =) s, 315 P—
0Q 0 da 0 af
The index ‘0’ denotes partial derivatives of the F functions at the equilibrium point. The
stability of the approximate solution (19) depends on the roots of the characteristic
equation (22). Solutions are stable when eigenvalues of the characteristic equation have

negative real parts. The numerical values of the eigenvalues will be presented in the next
section.

/AN

[TAN

5. ON NUMERICAL SIMULATION RESULTS

Numerical results were carried out by using a Matlab-Simulink® package. Calculations
were done for different sets of the system parameters taken from the most interesting
intervals of physical systems. Results of calculations were obtained for the following
parameters [11, 12, 14],

o=01,=0057=01u=02g=020n=03
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and the characteristic of energy source was assumed as a straight line (see equation (8)),
r (¢) =Up — uz‘iS

where u, is a control parameter and depends on voltage, and the u, parameter depends on
the type of energy source. In the calculations, the control parameter is assumed as u; € (0-6,
4-0), and u, = 1-5.

With account taken of the approximate equations (19) and by finding numerically the
roots of the characteristic equation (22), the amplitude and a rectangular velocity were
found and are plotted against the control parameter in Figure 2. Analytical results are
denoted by AR, stable and unstable solutions are denoted by solid and dashed lines,
respectively, and RKG are Runge-Kutta—Gill method results with a variable step length.
The results shown in Figure 2 are analyzed according to three distinct regions: A, {u; €
(06, 1:3)}; B, {uy € < 1:3,2:5)}; C, {u; € <25, 4)}.

The time history of the vibrational behaviour of the displacement and angular velocity in
region A is shown in Figure 3(a). In this region one may observe quasi-periodic motion
which is obtained by mutual interaction between self-excitation, parametric excitation and
energy source (DC motor). This type of motion is marked in Figure 2 by two dots, denoting
extreme deflections of the system. In region B, a kind of synchronization effect is observed.
It has predomination of parametric and external excitation. An additional interesting effect
in the synchronization region is visible. There are two maximas, resulting from a strong
interaction between the vibrating system and energy source (limited power supply). Before
going out from the synchronization area to region C (near u; &~ 2-4) the system may vibrate
periodically and quasi-periodically, depending on the chosen initial conditions. Finally, in
region C the system vibrates quasi-periodically once more (see Figure 3(d)).

Similar effects connected with angular velocity are shown in Figure 2(b). It is also
important to mention that if one slowly increases the voltage, inside the synchronization
region, that is u; € (1-2. 2-4), one observes a decreasing of the angular velocity Q. Time
histories of the displacement X and angular velocity w obtained from numerical simulations
for characteristic u, parameters are presented in Figure 3. Quasi-periodic vibrations out of
the synchronization region are presented in Figure 3(a) for u; = 1-3, Figure 3(c) for u; = 2-4

I L 1 I Il L L L 1 L 1 I O
08 12 16 20 24 28 32 36 40 08 12 16 20 24 28 32 36 40
u, LS|

Figure 2. Amplitude (a) and angular velocity (b) versus control parameter u; near the main parametric
resonance. AR, analytical results; RKG, numerical simulation.
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Figure 3. Displacement X and angular velocity w; time histories for chosen control parameter u,. (a) u; = 1-30;
(b) uy = 2-20; (¢) uy; = 2-40; (d) u, = 2-80.

and Figure 3(d) for u; = 2-8 respectively. For u; =22 the system is synchronized and
vibrates periodically (see Figure 3(b)).

The amplitude versus angular velocity near the main parametric resonance obtained
from asymptotic analysis (section 3) is presented in Figure 4. This resonance curve has an
untypical shape. A zoom of this region shows peculiar behaviour. Inside the
synchronization region an internal loop appears. It is possible to explain this by observing
region B in Figure 2. Comparing amplitude and angular velocity characteristics in
Figures 2(a, b) reveals local maxima for both curves. This affects directly the shape of the
amplitude versus angular velocity curve in Figure 4. It is necessary to mention that this kind
of internal loop appeared in the ideal model [11, 12]. Nevertheless, ideal and non-ideal
loops have different meanings. For the ideal model the internal loop appears on the right
branch of the resonance curve and only its upper part is stable. For the non-ideal system
this kind of loop appears on the left branch and there are only stable solutions. This effect is
caused by interaction between self- and parametric excitations and is due to the influence of
the non-ideal source of energy.

It is possible to verify agreement between asymptotic and numerical results. In Figures 5
and 6 the passage through resonance with a slowly increasing and decreasing value of the
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Figure 4. Amplitude versus angular velocity near the main parametric resonance.
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Figure 5. Transition through resonance with a slowly increasing value of control parameter u,.

control parameter u, is presented. In these figures one can note that inside the resonance
region, t € (100, 300) for increasing, and t € (240, 380) for decreasing, values of the control
parameter u;, two maximas of amplitude are visible. These results are in complete
agreement with previous results shown in Figures 2 and 4.
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Figure 6. Transition through resonance with a slowly decreasing of control parameter u; .

6. SOME CONCLUDING REMARKS

A non-ideal parametrically and self-excited vibrating model was investigated by
analytical and numerical methods. Interaction between parametric and external excitation
leads to the synchronization phenomenon. In the ideal model a kind of internal loop has
been obtained in the synchronization region near the main parametric resonance.
Nevertheless, only the upper part of the loop is stable and it appeared on the right branch of
the resonance curve [11, 12]. New results for a non-ideal system have been obtained.
Contribution of the non-ideal energy source is manifested by an internal stable loop
inside the main parametric resonance. The loop is located on the left branch of the
amplitude versus the angular velocity curve (see Figure 4). In this particular case the loop
appears on a distinct part of the resonance diagram. This phenomenon is produced by
interaction between self- and parametric excitation and the external non-ideal source of
energy.
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